Publications

SoK: Pitfalls in Evaluating Black-Box Attacks

Numerous works study black-box attacks on image classifiers. However, these works make different assumptions on the adversary’s knowledge and current literature lacks a cohesive organization centered around the threat model. To systematize knowledge in this area, we propose a taxonomy over the threat space spanning the axes of feedback granularity, the access of interactive queries, and the quality and quantity of the auxiliary data available to the attacker. Our new taxonomy provides three key insights. 1) Despite extensive literature, numerous under-explored threat spaces exist, which cannot be trivially solved by adapting techniques from well-explored settings. We demonstrate this by establishing a new state-of-the-art in the less-studied setting of access to top-k confidence scores by adapting techniques from well-explored settings of accessing the complete confidence vector, but show how it still falls short of the more restrictive setting that only obtains the prediction label, highlighting the need for more research. 2) Identification the threat model of different attacks uncovers stronger baselines that challenge prior state-of-the-art claims. We demonstrate this by enhancing an initially weaker baseline (under interactive query access) via surrogate models, effectively overturning claims in the respective paper. 3) Our taxonomy reveals interactions between attacker knowledge that connect well to related areas, such as model inversion and extraction attacks. We discuss how advances in other areas can enable potentially stronger black-box attacks. Finally, we emphasize the need for a more realistic assessment of attack success by factoring in local attack runtime. This approach reveals the potential for certain attacks to achieve notably higher success rates and the need to evaluate attacks in diverse and harder settings, highlighting the need for better selection criteria.

Adversarial Illusions in Multi-Modal Embeddings

Multi-modal embeddings encode texts, images, thermal images, sounds, and videos into a single embedding space, aligning representations across different modalities (e.g., associate an image of a dog with a barking sound). In this paper, we show that multi-modal embeddings can be vulnerable to an attack we call adversarial illusions. Given an image or a sound, an adversary can perturb it to make its embedding close to an arbitrary, adversary-chosen input in another modality. These attacks are cross-modal and targeted: the adversary can align any image or sound with any target of his choice. Adversarial illusions exploit proximity in the embedding space and are thus agnostic to downstream tasks and modalities, enabling a wholesale compromise of current and future tasks, as well as modalities not available to the adversary. Using ImageBind and AudioCLIP embeddings, we demonstrate how adversarially aligned inputs, generated without knowledge of specific downstream tasks, mislead image generation, text generation, zero-shot classification, and audio retrieval. We investigate transferability of illusions across different embeddings and develop a black-box version of our method that we use to demonstrate the first adversarial alignment attack on Amazon’s commercial, proprietary Titan embedding. Finally, we analyze countermeasures and evasion attacks.